
http://iac.dtic.mil/dacs/
http://www.defenselink.mil/
http://www.softwaretechnews.com

About the DoD Software Tech News

Article Reproduction

Images and information presented

in these articles may be reproduced

as long as the following message is

noted:

“This article was originally printed in

the DoD Software Tech News, Vol. 5,

No. 3. Requests for copies of the

referenced newsletter may be

submitted to the following address:

Lon R. Dean, Editor

Data & Analysis Center for Software

P.O. Box 1400

Rome, NY 13442-1400

Phone: 800-214-7921

Fax: 315-334-4964

E-mail: news-editor@dacs.dtic.mil

An archive of past newsletters is

available at www.dacs.dtic.mil/

awareness/newsletters/.”

In addition to this print message,

we ask that you send us three

copies of any document that

references any article appearing in

the DoD Software Tech News.

About This Publication:

The DoD Software Tech News is

published quarterly by the Data &

Analysis Center for Software

(DACS). The DACS is a DoD

sponsored Information Analysis

Center (IAC), administratively

managed by the Defense Technical

Information Center (DTIC) under

the Defense Information Systems

Agency (DISA). The DACS is

technically managed by Air Force

Research Laboratory, Rome, NY

and operated by ITT Industries,

Advanced Engineering and

Sciences Division.

To Subscribe to this

Publication Contact:

Phone: 800-214-7921

Fax: 315-334-4964

E-mail: news-editor@dacs.dtic.mil

Web: www.dacs.dtic.mil/forms/

regform.shtmlDACS

P.O. Box 1400

Rome, NY 13442-1400

Phone: 800-214-7921

Fax: 315-334-4964

E-mail: dacs@dtic.mil

URL: http://iac.dtic.mil/dacs

12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901

STN Editorial Board

Lon R. Dean

Editor

ITT Industries, DACS

Paul Engelhart

DACS COTR

Air Force Research Lab (IFED)

Elaine Fedchak

ITT Industries

Morton A. Hirschberg

Editorial Board Chairman

US Army Research Lab

(retired)

Philip King

ITT Industries, DACS

Thomas McGibbon,

DACS Director

ITT Industries, DACS

Dave Nicholls,

DACS Deputy Director

ITT Industries, DACS

Marshall Potter

Federal Aviation Administration

Distribution Statement:

unclassified and unlimited

Cover Design by

Steve Lisi, Steffen Publishing

STN 5-3: Experience Based Management2

http://iac.dtic.mil/dacs/
http://iac.dtic.mil/dacs/
http://www.dtic.mil/
http://www.disa.mil/
http://www.afrl.mil/
mailto:news-editor@dacs.dtic.mil
http://www.dacs.dtic.mil/forms/regform.shtml
http://www.dacs.dtic.mil/awareness/newsletters
mailto:news-editor@dacs.dtic.mil

Data & Analysis Center for Software (DACS) 3

Tech Views: The Role of Experience
by Morton Hirschberg, STN Editorial Board Chairman

Funk and Wagnall’s defines

‘EXPERIENCE’ as knowledge

derived from ones own action,

practice, perception, enjoyment or

suffering; how superbly applicable

to Software Engineering. The

articles in this issue deal with

perceptions gained through the

actions and communications of the

lessons learned from others as well

as practice gained individually and

in teams. Raw talent can take one

far however, when tempered with

wisdom, success is more likely. It is

the experience of programming

teams and their management that

leads to success.

Vic Basili (UMD) and Barry Boehm

(USC) have been instrumental in

the design and implementation of

“The Experience Factory.” The

Experience Factory defines a

framework to plan the use of

resources, manage and manipulate

resources and processes and strives

for continual improvement. Key to

Experience is its capture, structure,

searchability, availability and

maintainability. The article by

Basili and Boehm details a large

program called CeBase and its

immediate application which is the

Lessons-Learned Repository for

COTS software development.

In an article summarizing his

keynote address at the 2002

Software Technology Conference

(STC) in Salt Lake City, Lloyd K.

Mosemann II (SAIC) gives us his

perspective on the ills of Software

Engineering, especially, ‘best

practices’ and suggestions for

healing them. Seldom have I been

in such near congruent accord with

an author. Bravo!!

John Salasin (DARPA) and his

coauthors, Assad Moini (SPC) and

Gwen Williams (Schafer Corp.)

present Habitats, an Architecture for

the Global Information Grid. “The

Habitats concept and its supporting

technology will enable a new

generation of systems that can

successfully and predictably operate

in a network-centric world of vastly

distributed and dispersed resources,

devices and users interacting via the

Global Information Grid.”

In a previous article, Lawrence

Bernstein (Stevens Institute of

Technology) and his colleagues

have introduced a software-

engineering course whereby

computer science students are

exposed to real world problems. His

students are given problems which

failed in real life, and are expected

to work through to a successful

solution. A team approach is used.

The value of management is clearly

brought to bear. Now Mr. Bernstein

exposes us to Software

Rejuvenation, a fault tolerant

process that has had much success.

In searching for experience based

and apropos software engineering

material, the following web sites

contained a great deal of

information. First, from the

Software Program Managers

Network - http://www.spmn.com/

lessons.html. Second, from

Software Methods and Tools -

http://www.methods-tools.com.

Finally, from Brad Appleton -

http://www.bradapp.net. Especially

useful are Brad’s many Software

Engineering links.

http://www.spmn.com/lessons.html
http://www.bradapp.net/
http://www.methods-tools.com/

STN 5-3: Experience Based Management4

Lessons-Learned Repository for COTS-Based SW Development
by Victor Basili, Mikael Lindvall, Iona Russ, and Carolyn Seaman,

Fraunhofer Center for Experimental Software Engineering, Maryland and

Barry Boehm, University of Southern California

Abstract

Individuals acquire knowledge

while working in software

development projects but too often

this knowledge is not documented

or captured so that it can be shared

or later reused. Dissemination of

experience related to new

development paradigms, such as

development based on commercial

off-the-shelf (COTS) components,

can be particularly useful. To

support sharing experiences about

COTS-based software (CBS)

development, we have built and

made available to the software

engineering community a web-

based repository of lessons learned.

This collection of practical

knowledge is currently seeded with

lessons extracted from published

experiences and online Workshops.

The repository offers capabilities

for online search and retrieval,

submission of lessons and feedback,

plus a visual query interface that

allows for analysis of the lessons

learned and their usage. The

repository will grow organically in

the directions indicated by usage

and contributions from its users.

1. Introduction

COTS-based software development

is different in many respects from

in-house software development.

Managers and developers must

perform new activities and need

new skills and knowledge whose

acquisition is time consuming. Let

us illustrate what we mean with a

fictional story.

Joe Cotsford is a software team

lead working for a government

contractor and he has a

problem: Joe has been charged

by his project manager with the

task of evaluating and selecting

a COTS product to use as a

major subcomponent of their

CCTwo system. He’s solicited all

his colleagues on products to

evaluate, and received about 20

suggestions. He spent a lot of

time collecting information on

these 20 products and was able

to eliminate about half of them

based on functionality, platform,

and price. But now he needs

some more criteria to use to

whittle down the current list of

10 products to just one. He is at

a loss as to how to proceed

because he can’t think of any

other relevant factors to use to

continue his evaluation. So he

looks on the web for any

available resources, but is

quickly overwhelmed with the

number of irrelevant hits. Surely

someone somewhere has dealt

with this problem before, but

where can he find this

experience?

Although this is a hypothetical

character and scenario, the situation

is not unusual. The problem is that

this kind of knowledge might not be

found in books, journals, or on the

web, or if it exists, is scattered

across many different web sites or

buried in published papers. For

example, some good general

guidelines and procedures are

available on the web, notably at the

SEI’s COTS based systems web site

(http://www.sei.cmu.edu/cbs/) but

Joe knows that his results would be

stronger if corroborated by specific

previous experiences. Joe would

thus have difficulty finding any

good sources for this information in

a timely manner.

2. CeBASE COTS

Lessons-Learned

Repository

One approach to facilitating

knowledge sharing within

communities is building experience

repositories. The development of a

COTS Lessons Learned Repository

(CLLR), in which all authors are

involved, is part of the Center for

Empirically-Based Software

Engineering (CeBASE) initiative.

CeBASE (www.cebase.org) is an

National Science Foundation (NSF)

sponsored partnership between

universities, research centers, and

industry, whose main purpose is to

promote experience sharing among

software development practitioners.

We present here the results of the

effort focused on acquisition and

dissemination of experience

throughout the CBS community of

interest. The participation of project

managers, developers, COTS

integrators, and other practitioners

is essential in order for the entire

community to benefit from this

effort.

The CLLR is a living repository

that can be accessed through

http://fc-md.umd.edu/ll/index.asp. It is

available for practitioners to use,

comment on, add to, and help

define its evolution. The repository

will not grow or thrive unless it

http://fc-md.umd.edu/ll/index.asp
http://www.sei.cmu.edu/cbs/

Data & Analysis Center for Software (DACS) 5

meets the needs of the practitioners’

community. So its actual

evolutionary path will depend

completely on how it is used and

the needs expressed by its users.

In this paper we present the current

status and capabilities of the

repository, and our vision for its

future evolution. We strongly

encourage readers to comment on

our ideas.

2.1 Repository Content

and Organization

Luckily, Joe finds a reference to

the CeBASE COTS Lessons

Learned Repository at http://fc-

md.umd.edu/ll/index.asp. After

accessing the repository and

searching for lessons learned on

“COTS evaluation”, he finds

several that catch his eye. One

says “on safety-critical systems,

only use components from a very

mature vendor”. Another says

“using components from vendors

who have been in business less

than 3 years incurs a high risk of

having to replace that

component during maintenance,

or even before initial deployment

of the system”. Since Joe’s

system is both critical, and is

envisioned to have a long life,

both of these lessons learned

seem relevant. This gives Joe

ideas for evaluation criteria. It

also makes Joe think that, in

addition to evaluating the

components on his list, he really

should be evaluating the vendors

as well. So he decides to go to

his company’s software

acquisition office and talk to

folks there about their previous

experiences with the vendors of

components on his short list.

While talking to his company’s

procurement people, Joe got an

earful. In addition to information

about companies and their

maturity, he heard lots of horror

stories. These included stories of

broken contracts, non-

responsiveness of help desks,

low component quality, lack of

documentation, vaporware, and

sleazy negotiating tactics. For

example, he found out that the

vendors of the three most

attractive-sounding products

used terms such as “in alpha

testing” as a synonym for

vaporware. Based on all this

information, he was easily able

to filter out most of the 10

products on his short list, ending

up with one final candidate.

Because he had collected

information on the product and

the vendor, he was confident in

recommending this one

remaining product to his project

manager.

Based on this experience, Joe

recommended to his manager

that all COTS-based

development projects take into

account this kind of vendor

information in COTS evaluation.

His recommendation was

adopted and written into his

company’s procedures for COTS

selection.

For justifying his COTS

selection decision, Joe told his

manager about the repository. It

so happens that Joe’s manager

likes new gadgets, so he went

online, browsed through the

repository and was pleasantly

surprised to find a few good

pieces of advice, such as “if your

customer does not have flexible

requirements, using COTS is not

a good option” and “get your

customer involved early”. That

made him immediately initiate

discussions and requirements

negotiation with the customer.

Also, while talking to the

acquisition people, Joe

mentioned the lessons learned

repository. They were curious

about whether there was

anything relevant to them there.

Since it only takes a few clicks,

they decided to give it a try. They

learned about a project that had

a problem with a multi-vendor

solicitation that could have been

avoided if a pre-award hearing

would have been held. In order

to prevent such a situation, Joe’s

organization decided to hold a

hearing themselves.

The lessons learned repository that

supported Joe in his decision

making is real and is currently

seeded with an initial set of about

70 lessons learned extracted from

the literature. The sources that

provided these lessons include

journal articles [3], workshop

presentations [6], and government

reports [1], [7]. In addition, we

organize online workshops

(eWorkshops [4]) and use these

discussions to synthesize new

lessons and to refine the existing

ones. We are also in the process of

consolidating our repository with

lessons learned by the SEI that have

been collected from a large number

of case studies, but have not been

published.

The lessons are described in the

repository by a set of attributes, the

most important being the ones

describing the context in which the

lesson was learned (type of system,

type of company, number and type

of COTS). Other attributes refer to

type of data, recommended

audience, relevant life cycle phase,

etc. Most of the attributes were

chosen based on a bottom-up effort

to differentiate the lessons learned

in the initial repository, but others

were added simply because they

seemed to reflect issues of interest

to potential practitioner users (e.g.

impact on cost, quality and

schedule).

The interface to the repository

supports search and retrieval based

on text searches over all attributes.

Links to the original source of each

lesson are also provided.

The repository also has a built-in

facility for tracking various metrics

related to repository usage. This

metrics data can be used to tune the

repository based on patterns of

usage.

2.2 Capabilities/Features

Figure 1 presents the main

components of the COTS Lessons

Learned repository and how it is

used.

The main component currently

implemented is the COTS Lessons

Learned database, which is

accessible over the web, through

any browser at

http://fc-md.umd.edu/ll/index.asp.

The main component currently

available is the COTS Lessons

Learned repository. Users can

interact directly with the repository

and browse or search and retrieve

lessons. They can also submit

feedback about existing lessons or

submit new lessons. The feedback

and new lessons will go first to a

buffer; they will be examined and

validated by the validator and then

uploaded. An administrator takes

care of maintaining the repository

and an analyst is responsible for the

repository’s evolution. A component

of the system (currently under

development) will allow dialogues

Figure 2. Search Result Example

Figure 3. Lesson Learned Details Example

Figure 1. The COTS Lessons-Learned Repository Usage

COTS

Lessons

Learned
Admin

Analyst

Validator

Users

Experts

Discussion

Group

Log

AskAnExpert

Log

 Extract

Lessons Learned

Answers

Questions

Submit Lessons Learned

Submit Feedback

Buffer

Validate

Upload/Update LLBrowse, Search

&
 Retrieve

STN 5-3: Experience Based Management6

http://fc-md.umd.edu/ll/index.asp

Data & Analysis Center for Software (DACS) 7

between users and experts, to

support helping concrete problems.

The logs of these dialogues are

captured and used for extracting

new lessons (as discussed in Section

3: Future Work).

A user can browse through the

lessons or search for specific ones

as shown in Figure 2. The statement

of the lesson and the action

recommended are listed on the front

page thus immediately visible to the

user. Details about a specific lesson

are just a click away. The “Click

here for details” link displays (as

shown in Figure 3) all the values of

that lesson’s attributes.

Feedback is always welcome and

users can at any time provide

feedback on any of the lessons

learned. This feedback reflects the

utility of the lesson to the user, and

the user’s opinion about the

applicability of the lesson in their

specific context. An example of

useful feedback is “this works

differently in my environment

because...” or “I experienced the

same situation in a similar project”,

or “I experienced the same situation

in this different context ...”.

Users can submit feedback not

only about individual lessons, but

also about the repository itself, its

technology, organization, and

usage. This will allow the

repository to evolve in the

direction desired by its users.

The users are of course highly

encouraged to contribute to the

“community experience” with

lessons they have learned

themselves. In order to share this

experience with their peers,

developers and managers are

asked to submit new lessons, by

using an online submission form.

For guidance on the use of the

repository, there is a set of

frequently asked questions (FAQ)

accessible from the main page. If an

answer cannot be found in the FAQ,

the user can submit a question and

one of the tech support people will

provide an answer. The new

question-answer pair will be posted

in the FAQ adding to the

community knowledge.

Another capability of the system is

a Visual Query Interface (VQI) [5]

to the lessons learned, as shown in

Figure 4. By using this VQI the user

can visualize the entire content of

the repository, which can facilitate

the search for relevant lessons. In

VQI, each dot displayed in the main

window corresponds to one lesson

in the repository. The set of lessons

displayed can be filtered using the

attributes as shown in the right

window. On the X and Y-axes the

user can select the attributes by

which lessons should be displayed.

In Figure 4, the X-axis represents

the “Life cycle phase/activity” (e.g.,

COTS evaluation, COTS upgrade,

Early development phases,

Procurement, System acquisition)

during which the lesson was learned

or can be applied. The Y-axis

represents the “Object” of the

lesson (e.g., Product, Process,

People, Vendor). The lessons can be

colored by a selected attribute -

which in Figure 4 is

“Recommended audience” (e.g.

Program Manager, Project Manager,

Developer). By clicking on a

particular dot, details about the

lesson will be displayed in a new

window similar to the one in

Figure 3.

2.3 Repository evolution

A year later, after his project had

successfully completed, with the

inclusion of the component he had

recommended, Joe went back and

took a look at his original “short

list” of 10 candidate components.

Almost all of the products he had

eliminated were currently either no

longer supported, or the vendors

had gone out of business. Joe

gathered information from other

COTS-based projects that had taken

place over the previous year and

found many similar experiences.

Joe felt this was a very useful lesson

learned, so he went again to the

CeBASE COTS Lessons Learned

Repository, but

this time to add

his own

experience. He

summarized his

lesson as

“information

about component

vendors is as

important as

information

about

components in

the COTS

article continued on page 20

Figure 4. Using the Visual Query Interface (VQI)

STN 5-3: Experience Based Management8

1. Background

Back in 1990 I declared that the

1980s were a lost decade from the

perspective of software

development progress. The

question I posed was: “Will there

be a breakthrough in the 1990’s?” I

went on to say:

“It won’t happen automatically;

people are too satisfied with

unsatisfactory ways. We dare not

make the mistake of

complacency a la the automobile

industry; we must push

awareness and resource

commitment to get ahead of the

power curve of demand.”

In 1994, I closed the annual DoD

Software Technology Conference

with the observation that the

underlying need within the defense

community is for predictability.

“From a Pentagon perspective,

it is not the fact that software

costs are growing annually and

consuming more and more of our

defense dollars that worries us.

Nor is it the fact that our weapon

systems and commanders are

becoming more and more reliant

on software to perform their

mission. Our inability to predict

how much a software system will

cost, when it will be operational,

and whether or not it will satisfy

user requirements, is the major

concern. What our senior

managers and DoD leaders want

most from us, is to deliver on our

promises. They want systems

that are on-time, within budget,

that satisfy user requirements,

and are reliable.”

The Question I should like to

briefly explore in this article is:

Did We Lose Our Religion?
by Lloyd K. Mosemann II, Science Applications International Corporation (SAIC)

“Where are we today, and where

will we be tomorrow?” Did we lose

our religion?

2. Did We Lose Our

Religion?

Why do I use the metaphor of

“religion”? Primarily because

“religion” is the traditional example

of “faith-based” behavior - that is,

behavior that is based on a belief-

system rather than on externally

imposed rules such as the “law of

gravity” or “she that has the gold,

rules”. Remember: the emotional

discussions regarding whether Ada

or C++ should be preferred were

frequently described as “religious”

arguments based on beliefs rather

than facts.

Sadly, I still see the world of

software being governed by

religious-like belief systems rather

than objective appraisal. When I

left the Pentagon six years ago I

described some of what was

happening as “bumper sticker”

management, and the situation has

not changed for the better. For

example, “Use Best Commercial

Practice”; or, “Buy Product not

Process”.

What’s wrong with “best

commercial practice”? Fact is, it

just doesn’t exist among DoD

contractors. It’s a fantasy created

by those who want to streamline

acquisition, making it possible to

cut the number of oversight

personnel by reducing the

opportunity for oversight. The best

way to justify a “hands off” attitude

is to assert that contractors always

do everything right!

There are more mature software

organizations today. Virtually every

large DoD contractor can boast at

least one organization at SEI CMM

Level 4 or above, and several

organizations at SEI CMM Level 3.

On the other hand, most DoD

software is still being developed in

less mature organizations - mainly

because the Program Executive

Officer (PEO) or Program Manager

doesn’t demand that the part of the

company that will actually build the

software be Level 3!

Back in 1991 Paul Strassmann, who

was then the Director of Defense

Information, said:

“The #1 priority of DoD, as I

see it, is to convert its software

technology capability from a

cottage industry into a modern

industrial method of

production.”

Guess what? That has not happened.

Why not? Because this requires

“software engineering”. Software

engineering encompasses a set of

three key elements — methods,

tools, and procedures — that enable

the manager to control the process

of software development and

provide the practitioner with a

foundation for building high quality

software in a productive manner.

The fundamental ingredient in a

“software engineering” approach is

the design of a robust software

architecture. By architecture I don’t

refer to the grouping and linkage of

servers and routers and PCs, but

rather to the inherent design of the

software itself - the identity of

modules and their relationships,

including in particular the

Data & Analysis Center for Software (DACS) 9

infrastructure, control and data

interfaces that permit software

components to operate as a system.

I am told by an attendee at a DoD

Systems Design Review several

months ago that the contractor

described his proposed system as

“modular”. That’s a good

architectural term, and it was

accepted at face value. In fact, the

system, when looked at by the

independent attendee, was found to

have only two modules. When this

was brought to the Government

Program Manager’s attention, he

said, “The contractor says it is

modular. He’s smarter than we

are.” This little incident

underscores two facts: architecture

was understood by neither the

contractor nor the government PM,

and the probability of a successful

software delivery is low.

All too often the DoD excuse for

not requiring an architectural

evaluation is that “requirements

change rapidly — can’t afford to be

locked into a specific architecture”.

Wrong - that is the very reason that

attention should be given to

architecture, so that changes to

requirements can be accommodated

easily.

I am told that

SEI is still

being asked to

do

Independent

Technical

Assessments

of “Why a

software

acquisition

has not

produced the

desired

working

software

system?” Why wait to ask SEI to

come in to do a post mortem and

tell you how you screwed up? Why

not ask them to come in, first, to

review the RFP and Statement of

Work, and, second, to assist in

evaluation of the software

engineering practices, software

development environment, and

proposed architecture proposed in

response to the RFP, and then,

again, after award to assess the

quality of the software engineering

and development process? SEI isn’t

cheap, but terminating a $100M

project for lack of satisfactory

performance isn’t cheap either.

Interestingly, when one thinks about

“best commercial practice”, there

are two very different worlds out

there. There is the government

contractor world; and, there is the

real commercial world - banks,

insurance companies, UPS and

FedEx, Eckerd Drug, and Disney

World. These companies develop

their own software using the best

available software tools such as

Rational’s software development

environment. They don’t pick the

cheapest tools. They don’t rely on

COTS or outside software

developers - their software is their

business, and they consider that it

provides them a competitive

advantage, and they want to control

it, and they use the best tools

available regardless of cost.

Product Line Developments are also

becoming increasingly

commonplace in the true

commercial world. In addition to

the original example (CelsiusTech,

the Swedish firm that was the first

to exploit the benefits of a product

line architecture approach to

software application development

back in the late 1980s), there are

now a number of firms that you

have heard of who are using an

architecture-centered approach: for

example, Nokia, Motorola, Hewlett-

Packard, Philips, Cummins Engine,

and (believe it or not) one

government application at the

National Reconnaissance Office

(NRO). The NRO is enjoying 50%

reductions in overall cost and

schedule, and nearly tenfold

reductions in defects and

development personnel. Let me list

for you the most common and

relevant-to-DoD reasons that these

companies give for adopting the

“Architecture-Centered Product

Line Approach” to software

development:

• Large-scale productivity gains

• Improved time-to-market = field

weapons faster

• Improved product quality

• Increased customer satisfaction

∼ Warfighter satisfaction

• Enables mass customization

• Compensates for inability to

hire software engineers

STN 5-3: Experience Based Management10

These companies and the NRO do

have “best practices”, but the “best

practices” are not yet widely

recognized as such. Frankly, it will

take DoD PEOs (not Program

Managers) and their overseers, the

Service Acquisition Executives, and

especially the DoD Comptroller and

PA&E folks, to recognize and direct

the product line approach to

software development and

acquisition. (Unfortunately, these

folks are not known for their

software acumen.) The major

impediment to the Product Line

Development approach, aside from

ignorance of its benefits, are

cultural, organizational, and,

especially, the DoD’s stovepipe

approach to budgeting and funding.

DoD has many potential software

product lines. None of them have

been built, largely for “political”

and stovepipe budgeting reasons.

As a result development and

fielding of defense systems

continues to take longer, cost more,

and lack predictable quality.

Product lines require strategic

investment, which appears to be

outside the DoD Comptroller and

Acquisition communities’ frames-

of-reference. Yet, it is the

Department of Defense that most

often uses the term “strategic”.

Cummins’ Engine Company used to

take a year or more to bring

software for a new engine to the test

lab - now they can do it in less than

a week! I strongly recommend that

you obtain a copy of a new book,

Software Product Lines, just

published in 2002 by Addison-

Wesley. The authors are from SEI.

Sadly, with the exception of the

NRO, it appears that the readers are

mainly from commercial

organizations. There was a

previous version of the book,

Software Architecture in Practice,

that sold more than 14,000 copies,

but I doubt that few, if any, DoD

folks have read it.

I work for one, but let me tell you

that, although government

contractors are commercial

organizations, they do not have an

identifiable “best commercial

practice”. They basically will

provide what the Government asks

for. The only reason many of them

can now boast of having at least a

few SEI maturity level

organizations is because, starting 10

years ago, many government RFPs

required a Software Capability

Evaluation as a condition of

bidding. In fact, sad to say, many

contractors today put into their

proposals satisfactory CMM

credentials, but then actually

perform the work with an

organization who couldn’t spell

CMM. Why does the Government

let this happen? Why aren’t there

Software Capability Evaluations

anymore? - the word is, they “take

too long and cost too much”. Better

to make a quick award, and then,

down the line, accept an inferior

product or terminate for

convenience. Too often what the

government has been asking for is

COTS. How many failures of

COTS-based acquisitions have there

been over the past decade? Too

many!

“Best commercial practice” is not

eliminating all software smarts in

government and relying 100% on

contractors to deliver good

software. “Best commercial

practice” is what real commercial

companies are doing. They have in-

house software expertise, they use a

robust software development

environment, and they base their

software development on a sound

software architecture. It is no

secret/no surprise that Rational and

their competitors have a growing

market in the commercial world and

a shrinking market in the

government world. I’m not

suggesting that the Government can

or should develop software in-

house. I am strongly suggesting

that the Government needs enough

in-house software expertise to know

what it is buying. It is still true that

you get what you pay for”, and that

“apples and oranges” are not the

same!

Watts Humphrey recently published

a new book entitled Winning with

Software - An Executive Strategy.

Not surprisingly, the book is

directed primarily at executives of

commercial companies. But every

DoD acquisition executive, PEO

and Program Manager needs to read

and understand it message. Frankly,

its message is pretty simple:

Software projects rarely fail for

technical reasons; invariably, the

problem is poor management. He

poses two interesting questions and

buttresses them with numerous

examples:

1. “Why do competent software

professionals agree to dates

when they have no idea how to

meet them?”

2. “Why do executives accept

schedule commitments when the

engineers offer no evidence that

they can meet these

commitments?”.

He asserts that Management’s

undisciplined approach to

commitments contributes to every

one of the five most common

causes of project failure:

Data & Analysis Center for Software (DACS) 11

1. Unrealistic schedules

2. Inappropriate staffing

3. Changing requirements

4. Poor quality work

5. Believing in magic.

3. What is Formal

Methods Programming?

Basically, it is all of the above

rolled together: sound management,

established engineering processes,

robust software development

environment, model based

architecture, and a reliable

programming language. I was

thrilled to see, in the March edition

of CROSSTALK, an article by Peter

Amey of Praxis Critical Systems, in

which he stated:

“There is now compelling

evidence that development

methods that focus on bug

prevention rather than bug

detection can both raise quality

and save time and money.”

He then goes on to say that a key

ingredient is the use of

unambiguous programming

languages that allow rigorous

analysis very early in the

development process. I was an

early and vocal advocate of Ada,

primarily because, unlike other

languages, it enforces basic

software engineering practice. In

that article Peter describes the use

of a subset of Ada known as

SPARK. He says,

“The exact semantics of SPARK

require software writers to think

carefully and express themselves

clearly; any lack of precision is

ruthlessly exposed by its support

tool, the SPARK Examiner.”

He indicates that there were

significant savings from using

SPARK in a critical avionics

program, including most notably

that formal FAA test costs were

reduced by 80%. Unfortunately,

this is an isolated DoD example -

the same rigor and discipline of

formal methods programming

should apply for all major software

intensive system developments.

4. Predictability

Finally, let me say a word about

Predictability. Predictability is the

only metric that the warfighters care

about. Question is - how can we

make the warfighters (including the

PEOs and PMs who are charged

with delivering the capabilities

needed by the warfighters) smart

enough to know that you can’t just

buy software as a product off the

showroom floor. There must be

understanding of the software

engineering paradigm that produces

software. In fact, more than this, to

be assured of getting software that

works on a predictable schedule and

at predictable cost requires that

someone in government be smart

enough to enunciate the basic

processes that will be employed by

the contractor to produce. This is

important because, otherwise,

competitors will bid an

unrealistically low price and

unrealistically fast schedule, and be

awarded the contract. To perform at

the low cost means no robust

software development environment,

no time and effort devoted to

creating a valid software

architecture, and probably means

cheap people. If the government

wants to “get software right”,

sufficient process guidance must be

given to assure that the contractors

all bid essentially the same level of

capability. I believe that

Government should be explicit

about the need for architecture, a

robust software development

environment, perhaps even the

requirement for a language like

SPARK, but, as a minimum, it

needs to specify that the performing

organization must be at least CMM

Level 3. Why? Because at Level 1

virtually all projects have cost and

schedule overruns, whereas at Level

3 virtually all projects are on target.

As regards Defect Rates and $ per

Source Line of Code, there is

substantial improvement on the

order of 20-50%. It really is true

that YOU GET WHAT YOU PAY

FOR. If you want it cheap, you’ll

get it cheap - but it may not work in

the manner envisioned, if it will

work at all.

Where have we been? The

Government I fear has been

wallowing in a slue of self-deceit,

thinking it need not have software

expertise, but can simply rely on the

so-called “best commercial

practices” of contractors. The

problem is that, left to their own

devices, the “best practices” of

defense contractors are not very

good. Are there best commercial

practices? You bet! The banks,

insurance companies and other truly

commercial enterprises have them.

But they have them, not because of

some automatic external

happenstance, but because their

senior managers have had the moxy

to realize that it takes money to

make money, and that it takes

software expertise to develop or

acquire software. The Government

needs to go and do likewise.

Otherwise, the decade of 2000 will

likely not show any lessening of the

Software Crisis that has carried over

from the 1990s.

STN 5-3: Experience Based Management12

1. Introduction

The military’s vision of future

warfare as described by Joint Vision

2010 (JV2010) emphasizes broad

use of advanced Information

Technologies (IT) to significantly

improve traditional military

capabilities. It implies tight

integration and interoperability

among DoD systems both

horizontally across different

domains (e.g., intelligence,

operations, and logistics) and

vertically between command levels

(e.g., National Command Authority,

Commander-in-Chief, Joint Task

Force Commander, and Small Unit

Operations). This tight integration

will also include dynamic multi-

national, multi-echelon teams

engaged in continuous (joint)

collaborative planning and/or

engagement.

JV2010 also stresses the importance

of information superiority and

decision superiority as the key to

the US military superiority in the

21st century. Decision superiority is

the state of having the ability to

collect, fuse, process and

disseminate an uninterrupted flow

of information and command, while

denying an adversary the ability to

do the same. Of course, information

superiority is not an end to itself but

a means to achieving decision

superiority. The objective is to

leverage and transform information

superiority into a state where better

decisions are made. The

overwhelming theme in all of this is

the enabling of both greater

Habitats: Toward An Architecture for the Global Information Grid
John Salasin, Defense Advanced Research Projects Agency (DARPA),

Assad Moini, Software Productivity Consortium, and Gwen Williams, Schafer Corporation

information sharing and effective,

fluid collaboration among

heterogeneous units, organizations

and systems as dictated by the

evolving mission needs. Achieving

and maintaining information

superiority places a huge emphasis

on operational application of

information technology. As a result,

our success in future operations will

heavily depend on our ability to

rapidly acquire, assimilate and

leverage emerging information

technologies.

To address the JV2010 needs,

several DoD programs are currently

underway including the Navy’s

Network-Centric Warfare (NCW),

the Air Force Joint Battlespace

Infosphere (JBI), and the Army’s

Future Combat Systems (FCS). All

these programs share and rely on a

common construct called the Global

Information Grid (GIG), an

Internet-like network of networks,

providing the necessary substrate

for connecting sensors, shooters,

commanders, analysts, legacy and

future command and control (C2)

and warfighting assets. The GIG

serves two main functions. First, it

is a notional construct (a conceptual

model) for presenting, evaluating,

calibrating and unifying advanced

military research and technology

planning required to realize the

JV2010 vision. Second, it is the

physical infrastructure that will

realize the goal of migrating the

DoD warfighting enterprise toward

a globally integrated command and

control platform, supporting a broad

spectrum of future warfighting

needs, including operations other

than war. Much of the previous

work on the GIG has focused on

connectivity, networking and basic

interoperability issues, such as how

to incorporate airborne nodes into

the GIG and integration of newer,

IP-based networking backbone and

the legacy, military radio

communication protocols. Among

the areas yet to be addressed, are

the issues revolving around the

control, allocation, monitoring and

management of the GIG resources.

We are proposing habitats as a

unifying systems concept and an

architectural construct for

identifying, formulating, assessing

and presenting issues, concepts,

engineering principles, methods and

solution approaches required to

make the Global Information Grid a

reality. The habitats concept also

serves as a test bed for ideas and a

focal point for integration of a

broad range of research issues into a

cohesive research agenda.

The next two sections briefly

characterize the GIG environment

and the key issue of control and

management of the GIG resources,

respectively.

2. Characterizing the

Global Information Grid

The GIG has been characterized as

an information environment

providing value-added services

supporting uninterrupted, secure

flow of mission-critical planning

Data & Analysis Center for Software (DACS) 13

and survival information in a

globally disbursed environment

among producers and consumers. In

this respect, the GIG is more than

just a network of networks; it is a

system of systems consisting of both

physical and logical components.

As an architectural construct, the

GIG promotes a service-centric

approach as opposed to the earlier

DoD application centric platforms.

To be effective, the GIG must

provide the following capabilities:

• Serve as a generic, plug-and-

play infrastructure,

accommodating rapid, ad-hoc

adaptation and reconfigurability

to support evolving mission

needs, for a broad spectrum of

operations including joint,

coalition as well as operations

other than war

• Provide a seamless environment

for end-to-end access to, fusion,

dissemination, and presentation

of information services

regardless of the providers’

underlying platforms or

networks

• Provide the required computing

resources (connectivity,

bandwidth, processing) on

demand as well as on an

anticipatory basis

• Provide management and

control mechanisms for

provisioning both local and

global resources

• Allow for easy extensibility

with respect to infusion and

insertion of new technologies,

while maintaining backward

compatibility with the legacy

and heritage systems as well as

the existing suite of military-

unique networking and

communication protocols

Implementing the GIG requires

dealing with numerous technical

challenges especially with regard to

end-to-end interoperability and

security, as well as organizational

issues related to the ownership,

control and management of assets

and resources linked by the GIG.

From a purely technical standpoint,

building a global information

infrastructure without capitalizing

on currently available commercial

infrastructure, such as the

commercial Internet and Web

technologies, is not feasible. In fact,

adopting and leveraging these

existing commercial technologies in

building the GIG is a financial and

time-to-market imperative.

However, because commercial

technologies are designed with a

different set of priorities, a number

of issues must be addressed.

During this decade, Moore’s Law

projects a 32-fold increase in

processing power and a 256-fold

increase in storage capacity; all at

the same cost as today’s leading

edge commercial technology.

During the same period, advances

in optical networking and wireless

technology are expected to produce

a dramatic increase in networking

bandwidth and connectivity at

considerably affordable prices.

These technological advancements

raise two issues. First, the number

of entities situated on and linked by

the GIG can potentially be in the

billions, making it nearly

impossible to monitor, control or

manage as a single domain.

Second, much of this enabling

technology is and will be

proliferated throughout the world,

allowing potential adversaries to

achieve a greater level of

sophistication in their military

capabilities. A key challenge for the

GIG architecture is the ability to

rapidly accommodate, assimilate

and co-evolve with the emerging

commercial technologies.

3. Managing and

Organizing the GIG

Resources

The GIG must support

uninterrupted flow of mission-

critical planning and survival

information. The highly

decentralized nature of the GIG

raises serious concerns with respect

to the timely and predictable

allocation and recruitment of

geographically dispersed resources

in a manner that is consistent with

evolving operational needs and

priorities.

The ability to dynamically discover,

authenticate and allocate GIG

resources will require new

technologies. Decentralized control

and management of heterogeneous

resources, owned or controlled by

multiple authorities, over terrestrial,

wireless, radio and satellite

networks raises serious issues with

respect to authorization, mutual

authentication, and coordination for

access. Additionally, each local

authority may have its own internal

policies, checks and balances,

which are implemented as a

complex hierarchical decision-

making process. This makes both

finding and securing the required

resources even more difficult.

Development of authority and

STN 5-3: Experience Based Management14

accountability technologies would

facilitate acquisition and

authentication of resources.

4. Introducing Habitats

Historically, military systems (e.g.,

command and control) have been

built as a collection of disparate,

unique platforms with fixed

functionality, intended to address

specific operational needs. Many of

the existing DoD communication

systems are vertically integrated to

satisfy specific warfighting

requirements. Many legacy systems

have built-in, military unique

communication equipments.

Achieving interoperability and

information sharing among these

systems, even at a limited level is

not simple.

Habitats are computational building

blocks for arranging and managing

dynamic relationships in rapidly

changing, decentralized

environments, such as the GIG.

Habitats provide a computational

model for organizing, coordinating

and managing (human-to-human,

human-to-systems or system-to-

system) interactions in

environments where independent

actors must heavily rely on

information and communication

infrastructures to arrange and

coordinate interdependent (joint)

activities. These activities may

typically cross multiple

organizational and functional

boundaries. As such, habitats

provide the necessary shared

context for integrating business

processes across independent

organizations.

Conceptually, habitats resemble

virtual (human) organizations,

dynamically formed to augment or

extend human organizations in

support of a particular business

activity or mission. Therefore,

habitats can be either mission-

centric or organization-centric.

They serve to provide a shared

context and transactional boundary

for ongoing activities involving

humans, agents and systems.

Habitats also serve as shared

collaboration spaces mediating

secure, reliable and transparent

access to remote C2 and

warfighting assets, irrespective of

their (network) location or

underlying platform, in a manner

consistent with organizational

policies and procedures and subject

to appropriate checks and balances.

Habitats exploit the power of

networks to bring together

geographically dispersed,

distributed entities (human actors,

warfighting assets, C2

infrastructure…) toward

accomplishing a specific task or

mission. As such, they go beyond

merely facilitating information

sharing; they serve as a conduit,

arranging new forms of interaction

and collaborative relationships.

The goal of habitats science and

technology is to provide the

necessary technical infrastructure

needed to ensure that independent

groups or organizations, from

distinct spheres of powers, can

effectively and expeditiously align

their activities to achieve a common

objective. Toward this end, the

habitats technology must address

organizational, operational and

technical issues that arise in the

context of ad-hoc coordination,

collaboration and interoperability

among otherwise independent

organizations and systems.

Habitats also serve to provide a

computational context and

mechanism for partitioning and

scoping activities and automated

(business) processes that span

multiple systems and organizational

boundaries. As such, they provide

transactional boundaries necessary

for compartmentalizing,

monitoring, auditing, or

constraining activities that may

span heterogamous platforms and

networks. They also provide a

unified computing model that

combine and subsumes the

traditional distributed objects and

hypermedia web document model.

The following section illustrates the

notion of habitats in the context of a

combat situation, using an

operational scenario. Today, much

of the required collaboration is

complicated and hampered by the

fact that many of the functional

units and systems are often spatially

dispersed and have hard-wired

communication line (stove piped).

The concept of habitats is used to

dynamically organize otherwise

stand-alone systems into a

collaborative, networked system of

systems.

5. Habitats Desiderata

In this section we present a set of

desiderata (necessary

characteristics) that must be

fulfilled by the future habitats

technology. To meet the following

desiderata, the habitats technology

must provide universal (platform

and operating-system independent)

supporting mechanisms at the GIG

infrastructure level.

• Dynamic Membership Model.

New members are admitted or

enlisted and old ones can leave

Data & Analysis Center for Software (DACS) 15

the habitats (voluntarily or

become disconnected) or their

membership can be revoked if

their integrity is compromised.

Traditional networks generally

rely on the existence of a

permanent, centrally managed

security service. In habitats, the

entire functionality associated

with security is fully distributed

across all the members. This is

necessary to ensure a high

degree of resilience to

unexpected (communication)

failures or removal of a

member. The key elements of

the habitats dynamic

membership model are: the

mutual authentication of habitat

members, proof of habitat

membership to outsiders, and

authentication of members with

special privileges. The dynamic

membership model is required

for incorporating or removing

entities (e.g., coalition partners,

non-DoD, civilian agencies, or

allies). Habitats must support

flexible and interoperable policy

management and enforcement

by providing a dynamic

membership model.

Membership in secure habitats

may be required to facilitate

total resource management as

well as access to data.

• Dynamic, Granular Trust

Model. Military organizations

often need to cooperate or

interoperate with civilian or

non-governmental organizations

or members of military alliances

toward a common goal. In many

cases, it may be necessary to

share or transfer highly sensitive

information, for example by

providing access to intelligence

or reconnaissance assets on a

temporary basis subject to

limited, asymmetric trust.

Additionally, given the evolving

nature of operations and

alliances, the level and

granularity of trust among the

partners may change rapidly.

Habitats must explicitly support

the notion of granular trust

relationships (coarse and fine

grain trust levels) as well as an

asymmetric trust model.

Habitats infrastructure must

provide the necessary

mechanism to ensure end-to-end

authority accountability across

interacting, overlapping

habitats.

• Dynamic Policy Management.

Coordination policies highly

depend on the context of the

activities and the nature of

collaboration. Even within the

same context, policies often

may have to evolve due to the

changing nature of the

collaboration itself (with respect

to both scope and extent). In

habitat relationships, for

example in a coalition or

operations other than war

(OOTW) setting, the level of

trust among participants

(humans, military and non-

governmental organizations) can

change over time, thus

necessitating co-synchronization

or updating policies within and

across interacting habitats.

• Boundlessly Scalable.

Scalability is the ability to

increase or decrease the size

and/or scope, as necessary, to

accommodate dynamic changes

in operations, caused by the

changes in the environment.

Habitats will be capable of

expanding (upsizing) and

retracting (downsizing)

bandwidth and internal

processing capacity relative to

size, scope and quality of

service. Scaling up is the ability

to dynamically expand or

extend operations as the

workload grows. Scaling down

is the ability to contract

operations in size or scope, for

example by shedding

functionality or resources, in

response to diminishing

demands, under consumption of

resources or simply to cope with

independent local or remote

failures. Expandability and

adaptability are two

complementary aspects of

scalability.

• Expandable. Expandability

refers to a change in size or

scope necessitating a change in

structure or organization of

habitats. Expandability in

habitats requires the ability to

create new habitats practically

anywhere, anytime. New

habitats can be bootstrapped

from existing ones, for example,

by federating existing ones. At

the same time, existing habitats

must be able to incorporate new

habitats within themselves and

be able to create new (sub-)

habitats by reorganizing,

combining or regrouping.

• Adaptable. Adaptability is the

ability to evolve habitats

structure (roles, responsibilities,

authority and accountability

relationships) in response to the

evolving mission needs caused

by external factors, while

meeting commitments in place

STN 5-3: Experience Based Management16

(e.g., carrying out activities

already in progress).

Adaptability demands

reorganization by amending or

extending existing habitats by

incorporating new entities and/

or assets.

• Transitory in Nature. Habitats

are dynamic. Once formed, they

continue to co-evolve with

changing mission needs and

objectives. They are ultimately

dissolved or placed in a state of

hibernation; habitats placed in

hibernation can be resurrected

and placed back into the

operational mode as the need

arises. In this respect, habitats

are organizational/operational

blueprints for rapid creation of

electronic organizations (rapid

strike teams/cells) required to

support specific mission needs.

• Overlapping. Habitats can

overlap in space and time. Two

habitats can overlap in space by

virtue of sharing common

entities or assets (e.g., the same

ground sensor or airborne node

can be concurrently assigned to

multiple habitats, subject to

different access and usage

rules). Two habitats can

temporally overlap because of

their mutual dependence on

completion status of events or

activities hosted by another

habitat.

• Managing Quality Of Service.

Habitats infrastructure must

provide required computing

resources (connectivity,

bandwidth, processing) on a just

in-time, anticipatory, or

reservation basis.

• Unified Control and

Management. Habitats

infrastructure must provide

universal (platform and network

independent) mechanisms for

management and control of both

local and global resources.

6. Time Critical Target:

An Example

Consider a Time Critical Target

(TCT) cell habitat. The function of

the TCT cell is to assign resources

to emerging high priority ground

targets, identified by Joint-STARS

(JSTARS). This habitat is

instantiated (formed) when a

Moving Target Indicator (MTI)

track appears and JSTARS produces

a track report. The Air Defense

System Integrator System (ADSI)

automatically assigns a System

Track Number (STN) and begins

reporting the track with updates to

attributes such as location, speed,

direction, and classification (e.g.,

friendly, enemy or undetermined).

The ADSI then evaluates the track

and correlates JSTARS information

with that from other intelligence

sources, e.g. point of origin or

communications intelligence

(COMINT) reports on payload.

The TCT habitat is dynamic. Based

on its location (e.g., the theatre of

operation) it has the ability to

interoperate with certain specific

Information, Surveillance and

Reconnaissance (ISR), surface-to-

surface, Combat Operations, or

Area Air Defense (assets) habitats.

As a background task, it can update

its awareness of and access to

information about resources in its

current area of concern (based on

the JSTARS location). It is activated

on nomination of a dynamic target

and hibernates when no targets are

active (i.e., the Dynamic Target

Queue is empty).

The TCT cell habitat provides

specialized services to its

components. These might include

various models (e.g., dealing with

munitions effectiveness, platform/

resource performance,

meteorological effects, and

available bandwidth/latency). It

provides access to specialized,

context-dependent data (e.g., enemy

order of battle). It coordinates

components (e.g., resource location

and status agents, time sensitive

resource data update tools, tools for

coordination and deconfliction). It

also enforces various rules or

constraints (e.g., conditions

requiring different levels of

authorization, allowable threshold

of potential collateral damage, and

required authorization), commits

authority levels, required sequence

of operations (process), rules for

lawful targets (and when they need

to be enforced), fault-tolerant

fallbacks (QoS, data availability

concerns), and access and update of

authorization capabilities and

permissions. All of these models,

services, and rules are context

sensitive – they may depend on the

theatre involved or the state of

hostilities.

Note that this scenario and its

follow-on activities require dynamic

recruitment of resources and

services – a primary responsibility

of the habitat. These resources may

include, for example, information

about potential second sensor

sources and appropriate/available

weaponry assets. This information

might come from other (than Air

Data & Analysis Center for Software (DACS) 17

Force) services/organizations. It

could include: sensor or weapon

capabilities, current tasking/

scheduled tasking, current location,

time to image or reach target,

tasking authority, time sensitivity of

data, and weather.

The Table 1. illustrates the current

situation and the manner in which

habitats will address specific

present needs and shortcomings.

7. Conclusion

Today, the U.S. military is in the

process of transforming itself into a

nimble, cohesive organization of the

information age by replacing the

rigid, stove piped warfighting

infrastructure of the past with a

more flexible, agile organizational

structure equipped with distributed

sensing, planning and execution

capabilities, all networked together

via the Global Information Grid. In

this networked environment, the

relationships and the resulting

interactions are substantially

different from the traditional

hierarchical command and control

model. To successfully operate in

this environment, the traditional

top-down C2 hierarchy must be

modified to allow a more

decentralized, peer-to-peer decision

process at the lower levels, across

units, echelons, organizational and

functional boundaries. The habitats

concept and its supporting

technology will enable a new

generation of systems that can

successfully and predictably operate

in a network-centric world of vastly

distributed and dispersed resources,

devices and users interacting via the

GIG.

Table 1: Benefits of Habitats

Current Situation Benefits (with Habitats)

• Lack of visibility about potential • “Business rules” embedded in the
resources not under OPCON habitat and context information it
(Operational Control) of TCT provides to components offer:
organization. − Horizontal access to information

− Access to broader, richer set of
 assets

• Stovepipes required for decision • Improved coordination subject to
approval (time delay, latency) checks & balances (constraints

defining allowable interactions of
the habitat with other entities)

• Making targeting decisions takes too • Ease of incorporating business rules /
long constraints at habitat level of

abstraction will provide quicker
decisions, thereby reducing planning
cycles from 24 to 4 hrs – by reporting
exception only and involving
experts rapidly

• Ineffective utilization of resources • Better decisions due to business rules
due to poor coordination across and context sensitivity:
services, functional organizations − Involvement of appropriate levels
and/or units − Involvement of “best experts”

• Lack of visibility into resources − Better support to coordination,
availability use of limited resources.

• Inability to task resources not under
OPCON. This is a major problem
when resources are limited.

• Duplication of effort for systems • Reuse of components by abstracting
development and maintenance context-sensitive processing/data to

habitat level.
• Flexibility with respect to analysis

components used (e.g. Army does
best weapons system effectiveness
for ground to ground, Air Force for
air to ground)

• “One size fits all” syndrome • Habitats are tailorable (context
• Same tools and systems must be sensitive) operations to different

equally applied to large-scale general types (small group to theatre-wide
warfighting operations as well as conflict)
small conflicts or OOTW of actions • Ability to form habitats rapidly to

include nontraditional participants.

• Incompatible “business processes” • Rules to specify process coordination
(e.g., rules of engagement) across points and negotiation protocols.
services or functional organizations

STN 5-3: Experience Based Management18

1. Introduction

The 1990s was to be the decade of

fault tolerant computing. Fault

tolerant hardware was hot and

software fault tolerance was about

to happen. But it didn’t. Instead,

the Web Wave took off. Until a rash

of server failures, denial of service

attacks, web service failures and the

September 11 tragedy we lost

interest in fault tolerance. Even

though Software Fault Tolerance

was not hot, there was progress.

One breakthrough is the use of

Software Rejuvenation. Here are

three ways it was used to greatly

improve software reliability without

having to do the pain staking work

of digging out every defect even if

they would never cause a system

failure.

Software faults are most often

caused by design faults. Design

faults occur when a software

engineer either misunderstands a

specification or simply makes a

mistake. Software faults are

common for the simple reason that

the complexity in modern systems

is often pushed into the software

part of the system. It is estimated

that 60-90% of current computer

errors are from software faults.

Running software is a predictable

state machine. Software

manipulates variables that have

states. Unfortunately flaws in the

software that permit the variables to

take on values outside of their

intended operating limits often

cause software failures.

Software rejuvenation is special

software that gracefully terminates

A Stitch in Time…
By Larry Bernstein, Stevens Institute of Technology

an application, and immediately

restarts it at a known, clean, internal

state. Instead of running for a year,

with all the mysteries that untried

time expanses can harbor, a system

is run for one day, 364 times. It is

re-initialized each day, process by

process, while the system continues

to operate. Rejuvenation precedes

failure, anticipates it, and avoids it.

It transforms non-stationary,

random processes into stationary

ones.

2. Billing Data

Collection

Two years of operation have passed

with no reported outages for one

system that collects billing data

from telephone company switches.

Its rejuvenation interval is set at one

week. In another billing data

subsystem a 16,000 line C program

with notoriously leaky memory

failed after 52 iterations. After

adding seven lines of rejuvenation

code with the period set at 15

iterations, the program ran

flawlessly.

3. Store and Forward

Message Switcher

While software cannot be designed

without bugs, it does not have to be

as buggy as it is. For example, as

early as 1977, a software based

store and forward message

switching was in its fourth year of

operation and it handled all

administrative messages for Indiana

Bell without a single failure. This

record was achieved after a very

buggy start followed by a

substantial investment in failure

prevention and bug fixes. One

particularly error-prone software

subsystem was the pointers used to

account for clashes in the hash

function that indexed a message

data file. The messages could

remain in the file system for up to

thirty days. There were many hash

clashes due to the volume of

messages and the similarity of their

names. Once the obvious bugs

were fixed the residual ones were

hard to find. This led to unexpected

behavior and system crashes. A

firm requirement was not to lose

any messages. Failures exhibited

by latent faults can appear to be

random and transient. But they are

predictable if only we can get the

initial conditions and transaction

load to trigger them. They are

sometimes called Heisenbugs. It

was just too costly to find and fix

all the Heisenbugs in the file index

code, so rejuvenation was used to

rebuild the hash tables daily in the

early hours of the morning when

there was no message traffic. With

fresh hash tables, the chances of

triggering a fault was small

especially after the bugs that were

sensitive to the traffic mix were

found and fixed. This experience

shows that it is not necessary for

software to be inherently buggy.

4. NASA Uses It Too

The NASA mission to explore Pluto

has a very long mission life of 12

years. A fault-tolerant environment

incorporating on-board preventive

maintenance is critical to maximize

the reliability of a spacecraft in a

deep-space mission. This is based

on the inherent system redundancy

(the dual

processor

strings that

perform

spacecraft

and

scientific

functions

during

encounter

time). The

two

processor

strings are

scheduled to

be on/off

duty periodically, in order to reduce

the likelihood of system failure due

to radiation damage and other

reversible aging processes

Since the software is reinitialized

when a string is powered on,

switching between strings results in

software rejuvenation. This avoids

failures caused by potential error

conditions accrued in the system

environment such as memory

leakage, unreleased file locks and

data corruption. The

implementation of this idea

involves deliberately stopping the

running program and cleaning its

internal state through flushing

buffers, garbage collection,

reinitializing the internal kernel

tables or, more thoroughly,

rebooting the computer.

Such preventive maintenance

procedures may result in

appreciable system downtime.

However, by exploiting the inherent

hardware redundancy in this Pluto

mission example, the performance

cost is minimal. One of the strings

is always performing and starting it

before the current active string is

turned off can mask the overhead

for a string’s initialization. An

essential issue in preventive

maintenance is to determine the

optimal interval between successive

maintenance activities to balance

the risk of system failure due to

component fatigue or aging against

that due to unsuccessful

maintenance itself.1

5. Where To Get

Rejuvenation

Watchd and Libft are software fault

tolerance components. They may

be used with any UNIX or NT

application to let the application

withstand faults.

Watchd is a watchdog daemon

process for detecting UNIX process

failures (crashes and hangs) and

restarting those processes. The fault

tolerance mechanism is based on a

cyclic protocol. They may be

obtained at the Lucent web site,

www.lucent.com.

Windows 95 has a special library

WinFT that provides automatic

detection and restarting of failed

processes; diagnosing and rebooting

of a malfunctioning or strangled

OS; checking pointing and recovery

of critical volatile data; and

preventive actions, such as software

rejuvenation. Joao Carreira et. al.,

“Fault Tolerance for Windows

Applications,” Byte Magazine

February 1997, pp 51-52:

6. Wrap up

Most software runs non-

periodically, which allows internal

states to develop chaotically

without bound. Software

rejuvenation seeks to contain the

execution domain by making it

periodic. An application is

gracefully terminated and

immediately restarted at a known,

clean, internal state. Failure is

anticipated and avoided. Non-

stationary, random processes are

transformed into stationary ones.

The software states would be re-

initialized each day, process by

process, while the system continued

to operate. Increasing the

rejuvenation period reduces the cost

of downtime but increases

overhead. Rejuvenation does not

remove bugs; it merely avoids them

with incredibly good effect.

Rejuvenation does not remove bugs

that exist beyond its carefully

circumscribed limits. Instead, it

avoids the vast unknown territory

that conceals them.

1. Y. Huang and C. M. R. Kintala, “Software Implemented Fault Tolerance: Technologies and Experience”, Proceedings of 23rd Intl. Symposium on

Fault-Tolerant Computing, Toulouse, France, pp. 2-9, June 1993;

Also appeared as a chapter in the book Software Fault Tolerance, M. Lyu (Ed.), John Wiley & Sons, March 1995.

Data & Analysis Center for Software (DACS) 19

STN 5-3: Experience Based Management20

evaluation process.” He also

provided more information about

the context of his observations (e.g.

in defense-related, mission-critical

systems) and provided a few more

pieces of information, then

submitted all this for others in the

community to access.

The repository content is growing

organically by contributions from

users like Joe who add new lessons.

The content also evolves as a result

of analysis, synthesis, and

refinement of the existing lessons.

CBS experts, in collaboration with

the maintainer of the database,

perform this activity. The attributes

used to characterize and classify the

records will also evolve over time,

again, in the direction where the use

and the need will be.

Based on his experience with his

CCTwo project, Joe became a

regular user of the CCLR. One

day, as he was browsing for

information, he came across a

lesson that had been derived

from the lesson he had earlier

submitted, along with similar

lessons. While his lesson had

addressed the general

importance of vendor

information in COTS evaluation

in his domain, this new,

synthesized lesson went further.

It said, “If your customer is

willing to negotiate the

requirements, it is cost-effective

to choose components from more

dependable vendors than to

choose components with a better

functional fit to the original

requirements”. This statement

was based on lessons submitted

from software engineers in

various domains who had both

Lessons-Learned Repository for COTS-Based SW Development
Continued from page 7

good and bad experiences with

vendors. Some of them had done

detailed cost/benefit analyses.

This gave Joe a lot more

information about how to use

vendor information on future

COTS evaluations. It also gave

him a good feeling to know that

he had contributed in a

meaningful way to the body of

knowledge in his community.

3. Future Work

On another COTS-based

development project, Joe ran

into another problem: His

manager had asked him to come

up with an estimate for the

amount of time it would take his

team to integrate several COTS

components into a subsystem of

a large vehicle tracking system.

He was able to compute

estimates for the amount of glue-

code that would be needed and

how long that would take, but

there were numerous risks that

he wanted to take into account in

his estimates. He didn’t know

how to incorporate these risks,

so he again turned to the

CeBASE COTS Lessons Learned

Repository for guidance. Despite

searching for lessons on

“planning”, “estimation”, and

“risk management”, he could

find nothing that would help him

with his problem.

So he clicked on the “Ask An

Expert” option and submitted a

question on this subject. This

began a dialogue with an expert

in the area, who asked Joe

questions about the specifics of

his project and the risks he was

concerned about. Finally, they

came up with a plan that

allowed Joe to quantify the

“cost” of a risk, as well as the

“benefit” of reducing that risk.

These figures could then be

incorporated into the cost and

benefit estimates for the task.

Later, Joe was happy to find a

new lesson in the repository that

was synthesized from his

discussion with the expert, so

that others could benefit from

what he had learned.

The Ask An Expert feature is

currently under implementation. It

will offer an opportunity for peer-

to-peer communication (left part of

Figure 1). This dialogue is recorded

and after the person who asked the

question receives an answer, the log

of this conversation is used to

extract new lessons that will be

added to the repository.

Joe began using his new

approach for quantifying risks

on more projects, and over time

built up some experience with it.

However, he still had problems

with using it in some situations.

In particular, he often had

trouble estimating the potential

loss of having to entirely replace

a component due to unforeseen

problems with it. He wanted to

bounce some ideas off someone,

but nobody in his immediate

work area was familiar enough

with these issues to be able to

give any useful feedback. So Joe

went to the CeBASE site again

and this time joined a discussion

group on COTS estimation. He

posted his questions about

incorporating risk into

estimation to the discussion

group, and an interesting

discussion ensued. Many people

shared their experiences using

different approaches to cost

Software Tech News Subscriber Survey

1. Which volume of the Software Tech News did you receive? _______________________________

2. When did you receive the newsletter? (month/year) _________________________

3. How satisfied were you with the CONTENT of the newsletter? (Article Quality)
❏ Very Satisfied ❏ Satisfied ❏ Neither Satisfied nor Dissatisfied ❏ Dissatisfied ❏ Very Dissatisfied

4. How satisfied were you with the APPEARANCE of the newsletter?
❏ Very Satisfied ❏ Satisfied ❏ Neither Satisfied nor Dissatisfied ❏ Dissatisfied ❏ Very Dissatisfied

5. How satisfied were you with the OVERALL QUALITY of the newsletter?
❏ Very Satisfied ❏ Satisfied ❏ Neither Satisfied nor Dissatisfied ❏ Dissatisfied ❏ Very Dissatisfied

6. How satisfied were you with the ACCURACY of the address on the newsletter?
❏ Very Satisfied ❏ Satisfied ❏ Neither Satisfied nor Dissatisfied ❏ Dissatisfied ❏ Very Dissatisfied

7. Approximately how much time and/or money did you save by using the product or service?
❏ Unable to estimate _______________ Estimated hours saved ________________ Estimated dollars saved

8. How did you request the product or service?
❏ Phone Call ❏ E-mail ❏ DACS Website ❏ Subscription Form Other ___________________________

9. Would you order a DACS product or service again?
❏ Definitely ❏ Probably ❏ Not Sure ❏ Probably Not ❏ Definitely Not

10. Comments (Optional)

Contact Information (Optional)

Name: Position/Title:

Organization: Office Symbol:

Address:

City: State: Zip Code:

Country: E-mail:

Telephone: Fax:

Organization Type: ❏ Air Force ❏ Army ❏ Navy ❏ Other DoD ____________________________

❏ Commercial ❏ Non-Profit ❏ Non-US

❏ US Government ❏ FFR&D ❏ Other ________________________________

STN 5:3 - Experience Based Mgmt.

The first 50 people to send in a

completed survey will receive a FREE

DoD/IT Acronym List CD.

This valuable CD-ROM contains over 8,000 Department

of Defense and Information Technology (DoD/IT)

related acronyms. This Pentagon-shaped CD-ROM

plays in your computer’s regular CD drive.
(Windows only)

○ ○

� Fold Here �

○ ○

� Fold Here �

http://iac.dtic.mil/dacs/

Data & Analysis Center for Software (DACS)

http://iac.dtic.mil/dacs/

Data & Analysis Center for Software (DACS) 21

estimation on COTS projects,

and some offered well-tested

alternative approaches, such as

the COTS Cost Estimation

Model (COCOTS [2]). So Joe

got some new ideas to try out on

his projects, and everyone

involved learned something. The

lessons shared in the discussion

that were best supported with

real experience and data were

captured as new lessons learned

in the repository, so that others

not involved in the discussion

might learn from them too.

Besides the peer-to-peer

communication mechanism, we will

offer other means for community

support, such as group discussions

and eWorkshops (moderated chat

sessions where the log is recorded).

These logs will be analyzed, mined,

and new lessons will be derived and

added to the repository, according to

our approach of transforming

“knowledge dust” into “knowledge

pearls” [5]. We will thus provide the

process and the technology to

support knowledge collection,

organization, storage, evolution, and

dissemination for the CBS

community.

4. Conclusions

The COTS Lessons Learned

repository aims at disseminating

valuable knowledge and experience

between practitioners involved in

COTS-based development. Some

lessons learned in this area have

been published in papers, but have

not been previously actively elicited

and shared on a larger scale. By

providing an online repository used

by both experienced and less

experienced people, it is possible to

create a community of software

engineers and managers that share

this kind of knowledge and

experience on a daily basis.

References

1. Albert, C. and E. Morris, “Commercial Item Acquisition: Considerations and Lessons Learned”,

http://www.dsp.dla.mil/documents/cotsreport.pdf

2. Abts, Chris, Boehm, B. and Bailey Clark, E., “COCOTS: a Software COTS-Based System (CBS) Cost Model - Evolving Towards

Maintenance Phase Modeling,” Proceedings of the Twelfth Software Control and Metrics Conference (ESCOM 2001), held at

London, England, April 2001.

3. Basili, Victor, Boehm B., “COTS-Based Systems Top 10 List”, IEEE Software, May 2001, pp. 91-93.

4. Basili, Victor, R. Tesoriero, P. Costa, M. Lindvall, I. Rus, F. Shull, and M. Zelkowitz, “Building an Experience Base for Software

Engineering: A report on the first CeBASE eWorkshop”, Proceedings of the 3rd International Conference on Product Focused

Software Process Improvement, PROFES2001, Kaiserslautern (Germany), September 2001.

5. Basili, Victor, P. Costa, M. Lindvall, M. Mendonca, C. Seaman, R. Tesoriero, and M. Zelkowitz, “An Experience Management

System for a Software Engineering Research Organization”, in Proceedings of the 26th Annual NASA Goddard Software

Engineering Workshop, December 2001.

6. Fox, Steve, M. Moore, “EOSDIS Core System (ECS) COTS Lessons Learned”, 25th Annual NASA Goddard Software

Engineering Workshop, November 2000,

http://sel.gsfc.nasa.gov/website/sew/2000/SEW25_final_program.htm

7. Lewis, Patrick, Hyle P., Parrington M., Clark E., Boehm B., Abts C., Manners R., Brackett J., “Lessons Learned in Developing

Commercial Off-the-Shelf (COTS) Intensive Software Systems”, FAA SERC Report, 2001.

The COTS Lessons Learned

Repository is waiting to serve your

needs in CBS development. We

appreciate your contributions with

new lessons and any feedback you

can give. Please visit us at http://fc-

md.umd.edu/ll/index.asp.

Acknowledgments

This work is partially sponsored by

NSF grant CCR0086078 to the

University of Maryland with

subcontract to the Fraunhofer

Center Maryland (FC-MD). Many

thanks to Chris Abts from the

University of Southern California

(USC) for providing the material to

initially populate the repository; to

Forrest Shull and Patricia Costa

from FC-MD and Dan Port from

USC for their suggestions in

developing the repository.

http://sel.gsfc.nasa.gov/website/sew/2000/SEW25_final_program.htm
http://www.dsp.dla.mil/documents/cotsreport.pdf

STN Vol. 5, No. 3

In This Issue

The Role of Experience 3

Lessons-Learned Repository.......... 4

Did We Lose Our Religion? 8

Habitats: Toward an Architect for

Global Information Grid 12

A Stitch in Time 18

STN Subscriber Survey 22

Data & Analysis Center for Software

P.O. Box 1400

Rome, NY 13442-1400

PRSRT STD
U.S. Postage

P A I D
Permit #566
UTICA, NY

Return Service Requested

Advertisement

The DoD Software Tech News is now

accepting advertisements for future

newsletters. In addition to being seen by the

thousands of people who subscribe to the DoD

Software Tech News in paper copy the

advertisement will also be placed on the Data

& Analysis Center for Software’s website

(http://iac.dtic.mil/dacs/) exposing your

product, organization, or service to hundreds

of thousands of additional eyes.

Interested in learning more? For rates, layout

information, and requirements contact:

Lon R. Dean, STN Editor

Data & Analysis Center for Software

P.O. Box 1400

Rome, NY 13442-1400

Phone: 800-214-7921

Fax: 315-334-4964

E-mail: news-editor@dacs.dtic.mil

mailto:news-editor@dacs.dtic.mil

